Developmental aspects and mechanisms of rat caudal hypothalamic neuronal responses to hypoxia.

نویسندگان

  • E M Horn
  • G H Dillon
  • Y P Fan
  • T G Waldrop
چکیده

Previous reports from this laboratory have shown that a high percentage of neurons in the caudal hypothalamus are stimulated by hypoxia both in vivo and in vitro. This stimulation is in the form of an increase in firing frequency and significant membrane depolarization. The goal of the present study was to determine if this hypoxia-induced excitation is influenced by development. In addition, we sought to determine the mechanism by which hypoxia stimulates caudal hypothalamic neurons. Caudal hypothalamic neurons from neonatal (4-16 days) or juvenile (20-40 days) rats were patch-clamped, and the whole cell voltage and current responses to moderate (10% O2) or severe (0% O2) hypoxia were recorded in the brain slice preparation. Analysis of tissue oxygen levels demonstrated no significant difference in the levels of tissue oxygen in brain slices between the different age groups. A significantly larger input resistance, time constant and half-time to spike height was observed for neonatal neurons compared with juvenile neurons. Both moderate and severe hypoxia elicited a net inward current in a significantly larger percentage of caudal hypothalamic neurons from rats aged 20-40 days (juvenile) as compared with rats aged 4-16 days (neonatal). In contrast, there was no difference in the magnitude of the inward current response to moderate or severe hypoxia between the two age groups. Those cells that were stimulated by hypoxia demonstrated a significant decrease in input resistance during hypoxic stimulation that was not observed in those cells unaffected by hypoxia. A subset of neurons were tested independent of age for the ability to maintain the inward current response to hypoxia during synaptic blockade (11.4 mM Mg2+/0. 2 mM Ca2+). Most of the neurons tested (88.9%) maintained a hypoxic excitation during synaptic blockade, and this inward current response was unaffected by addition of 2 mM cobalt chloride to the bathing medium. In contrast, perfusion with the Na+ channel blocker, tetrodotoxin (1-2 microM) or Na+ replacement with N-methyl-D-glucamine (NMDG) significantly reduced the inward current response to hypoxia. Furthermore, the input resistance decrease observed during hypoxia was attenuated significantly during perfusion with NMDG. These results indicate the excitation elicited by hypoxia in hypothalamic neurons is age dependent. In addition, the inward current response of caudal hypothalamic neurons is not dependent on synaptic input but results from a sodium-dependent conductance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla.

Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catechola...

متن کامل

Oral administration of Ginkgolide B alleviates hypoxia-induced neuronal damage in rat hippocampus by inhibiting oxidative stress and apoptosis

Objective(s): The aim of this study is to explore the potential neuroprotective effects of Ginkgolide B (GB), a main terpene lactone and active component in Ginkgo biloba, in hypoxia-induced neuronal damage, and to further investigate its possible mechanisms.Materials and Methods: 54 Sprague-Dawley rats were randomly divided into three groups: the untreated control group (n=18); the hypoxia gro...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons.

Previous work from this laboratory has indicated that TTX-sensitive sodium channels are involved in the hypoxia-induced inward current response of caudal hypothalamic neurons. Since this inward current underlies the depolarization and increased firing frequency observed in these cells during hypoxia, the present study utilized more detailed biophysical methods to specifically determine which so...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 4  شماره 

صفحات  -

تاریخ انتشار 1999